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Two calculation models for estimating the rate of pressure growth in a large nondrained tank filled with a 

liquified gas under zero gravity are analyzed. Two limiting cases are considered. According to the first model 

it is assumed that heat is distributed uniformly over the entire mass of the liquid and gas, which are in 

thermodynamic equilibrium. This model yields the upper bound of the time in which a prescribed pressure 

is attained in the tank. In the second model one completely ignores any convection, the liquid boils at the 

tank wall, and the time is estimated (the lower bound) according to a nonstationary ablation model. 

Development of space engineering poses the problem of long-term storage of large amounts of liquid in 

tanks under zero gravity. An example of long-term storage is a fuel resupply station for space vehicles whose design 

is expected to be implemented in outer space by 1997 [1 ]. The long stay of large vessels with liquids, especially 
low-boiling ones, in space poses a series of interesting problems. One of these problems is the development of a 

simple method for estimating the pressure growth in a tank until the safety valve starts to operate as a result of 

lengthy inflow of small amounts of heat to a low-boiling component in the tank. It is of primary importance to have 

a method for this estimation in the case of storage of liquid hydrogen in a tank in view of its very low boiling 

temperature. The heat flux that reaches the liquid is governed by the design and properties of the heat insulation 

and the presence or absence of means of active thermostatic control. Problems of ensuring heat insulation of the 

tank are not considered in the present work. The objective of the work is to obtain methods for estimating the 

pressure growth in the tank as a function of the value q of the heat flux that reaches directly the liquid boundary. 

The main difficulty of this calculation is that the character of the motion of the large liquid mass in the 

tank, governing its heating and evaporation, is not determined. Since the tank with the liquid is in the zero gravity 

state the appearance of natural convection in the field of mass forces is hindered. However, the nonuniform surface 

tension due to nonuniform heating of the liquid serves as a driving force of convection. It is well known that a film 

of the gas-liquid interface moves in the direction of decreasing temperature and entrains the liquid, changing the 

temperature field in it. If initially there is a gas bubble in the tank and the tank wall temperature is above the 

liquid temperature, the bubble will be attracted to the nearest warmer portion of the tank wall. The motion of the 

gas bubble will mix a portion of the liquid, and the bubble itself will split into smaller ones under certain conditions 
(for example, with small loads that occur in some regimes of a space flight) [2 ]. 

Clearly, it is not possible to calculate the heat transfer under these poorly defined conditions. The present 

work proposes a model approach to solving the stated problem. This approach consists in estimating heating and 

evaporation of the liquid in two limiting cases: 1) heating and evaporation of the liquid are calculated under the 

assumption of complete mixing and 2) heating and evaporation of a stationary liquid at the tank walls are calculated 

with total neglect of convection. Similar assumptions were used in [3 ] to calculate the increase in pressure in tanks 

containing low-boiling liquids. This method yields lower and upper bounds of evaporation times of the liquid in 
zero gravity. 

Model of Complete Mixing. Let the liquid temperature be TO at the initial instant, the vapor density be 
e 

p0 at this temperature, and the liquid density be Pliq, respectively. 
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From the condition of mass conservation in the tank we have 

1 o 
o - (1 rio) Pliq 1" , [tg;.,~iq - -  Pv riO - -  r i 1 - -  , 

Pliq -- Pv 

The mass of the evaporated liquid is 

Am - - -  
V 

P/iq -- t9; 

, ~ , 0 

L~ (Pv -- pO riO) -- PvPliq (1 -- riO) I" 

The increase in the temperature  of the gas-liquid mixture is determined by the heat  balance: 

cvpOq (1 - rio ) (T - TO) + LAIn = qtS, 

where q is a uniform and constant heat flux applied to the tank surface; S is the area of this surface. 

The parameters  of liquid and gaseous hydrogen along the saturation line [4 ] at pressures p = ( 1 - 5 ) -  l0 s 

Pa are such that LArn/CV(T - TO) < 0.03. Therefore  the increase in temperature is determined by the formula 

T1 = TO + qSt ( 1 )  

cvpOq (1 - rio) 

To calculate the pressure in the tank, we assume that at the beginning of the heating, the vapor-gas bubbles are 

filled with a supercharge gas at the pressure P0 and a liquid vapor with the saturation pressure Ps at the liquid 

temperature TO. Then,  ignoring the charge in the amount  of the supercharge gas dissolved in the liquid, we have 

the pressure at the end of the heating: 

rioTl 
PI = Ps (T1) + PO ri1T 0 " 

Immiscible Liquid Model. Let us assume that the tank is filled with a stat ionary liquid with the temperature  

To and a bubble is at the center. The  heating of it by a constant heat flux q to the temperature  of the onset of 

boiling at the wall Tb is described by an equation that is valid for an infinite cylinder [5 ]: 

AT = 2qR ( 1 vr-~~ + l F~ + '"  ) ~ 4 

where R is the cylinder radius. If the Fourier number  Fo = at/R 2 < 0.05, then to an accuracy bet ter  than 10% we 

can ignore the curva ture  of the tank wall. For  liquid hydrogen ,  for  example ,  at T -- 20 K (2 = 1.17.10 -3 

W/ (cm.  deg), a --- 2 .10  -3  cmX/sec) this condition implies t _< 106 sec if the tank diameter  is 3.8 m, and the increase 

in the temperature  occurs by the law of heating of a semibounded body: 

AT = ~-  (at/:r) 1/2 . 

Estimating the conditions under  which the curvature of the tank wall has a weak effect on the result of heating is 

of importance to us because it is in the approximation of one-dimensional ablation of a semibounded body that the 

boiling rate is estimated once the liquid starts to boil at the tank wall. 

Pressure  Growth in a Tank in the Case of Liquid Boiling at the Wall. Figure 1 shows the scheme of filling 

the tank with a gas and a liquid. In the center of the tank there  is a bubble with volume V filled with a supercharge 

gas (helium) and gaseous hydrogen,  which are in thermodynamic equilibrium with the adjacent liquid. When the 

liquid at the wall starts to boil as a result of heat inflow to the tank, an annular  layer  of gaseous hydrogen will 
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Fig. 1. Calculation scheme of the model of near-wall boiling of liquid 

hydrogen. 

start to squeeze the liquid away from the wall, compressing the central bubble. The pressure in the tank will grow 

and the boiling temperature Tb will increase in accordance with the liquid saturation pressure. 

We will relate the change in the bubble volume to the amount of evaporated liquid. To do this, we will 

resort to the relation between the initial VI and final V2 volume of the central bubble: 

V 1 = V 2 4- Jr (R 2 - 2 )  l - ZTrRavh l .  

The equality of masses of the evaporated liquid and the vapor jacket yields 

arpv (R 2 - r 2) l --- Pliq Ray 2.Trlh. 

Assuming Ray -- (R + r ) /2 ,  from (3) we have R = r + Pliq/pvh.  From (2) and (3) it follows that 

h = R ~ n  q 1 - 1 - 
ygR2l (/gliq - Pv) 

(2) 

(3) 

(4) 

To avoid being engaged in complex details of the heat and mass transfer process that occur in compression of the 

central bubble but that are secondary for the given problem, we will determine the ratio V 2 / V 1  under two limiting 
assumptions. 

1. Compression occurs adiabatically, and in this case the pressure of the supercharge gas (helium) and the 

liquid vapor depends on V2/V1 as follows: 

( Vl/  -1 
P = Pile (Vl /V2)  + Ps (T1), TI = To V2 j , 

/ 

where y is the adiabatic exponent of the supercharge gas. This implies that the liquid-gas interface assumes the 

temperature of the supercharge gas, compressed adiabatically in the bubble, and the pressure of the liquid vapor 
corresponds to the temperature T 1. 

Z Compression of the bubble occurs isothermally, i.e., the liquid mass with temperature T o around the 

bubble is considered to act as a thermostat for the bubble contents: 
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1/1 
p = E + (To). 

In both cases the limiting permissible value is taken to be p. From the dependence of the pressure Ps and the density 

Pv we determine the temperature  to which the boiling liquid is heated at the boundary  of the vapor jacket and the 

vapor density Pv corresponding to it, which together with the value of V1/V2 is then used to determine h. 

Computat ion of  the Evaporat ion Time for  a Liquid Layer  of Thickness h. When h is known, the evaporation 

time can be determined using the model of ablation removal of material in melting [6 ]. For a s teady process this 

rate is easily determined in a one-dimensional  approximation: 

q 

UO - -  L / g l i  q (1 + e) ' 

where e = c / L ( T  6 - TO). However, at the beginning of the ablation process there is a nonstat ionary stage in which 

the rate u < u0. As the calculations show, at the values of the heat flux of interest from units of W / m  2 to a hundred  

W / m  2 liquid hydrogen boiling fits entirely in the nonstat ionary stage, in which u / u  0 < 0.92. Therefore  we will 

resort  to the results of analyzing nonstat ionary ablation [6 ]. 

The  dimensionless  evaporat ion rate u /uo  depends  implicit ly (in terms of the p a r a m e t e r  y) on the  

dimensionless time 0 = t/to: 

Y 
u / u  o = (1 + e) 1 + y '  (5 )  

2 
ey . = _ e  ( 0 -  1) (6) 

In rlt._ejj,,~+ 1 + e  1 + e  

Integrating u /uo  with respect to 0 enables us to determine h: 

h =  uot 0 ( 0 -  l - y ) .  (7) 

The time of heating of a semibounded body from TO to Tb by the heat flux q is taken as the time scale to: 

to = 
0.79 (T b - T0)2~ 2 

2 aq 

(8) 

The  depth of warmup of the liquid 6 is equal to : 

r ) 6 = ( y +  1) 1 - 2 / e  " 

A special feature of the process of boiling of liquid hydrogen at the wall of a closed tank is that  the phase 

transition temperature  T b does not remain constant but increases in accordance with the pressure in the tank. A 

change in Tb once the boiling starts implies a change in e in Eqs. (5) and (6). Fortunately,  at a hydrogen saturation 

pressure of ( 1 - 5 ) .  105 Pa (and, correspondingly, the temperatures Tb --- 2 0 - 3 0  K) e is small (e _- 0 .01-0 .025) .  

A change in e within these limits alters h by less than 1%. Therefore  for calculations we can assume e = 0.015 to 

good accuracy and consider e -- const. 

Example of  Calculating the Pressure  Growth in a Tank. As an example we will assume that  the tank has 

a diameter  of 3.8 m and a length l -- 6 m. The  initial temperature of the liquid hydrogen is TO = 16 K. The  

supercharge gas pressure is 1.02- 105 Pa. The  gaseous hydrogen pressure at T = 16 K is Ps -- 0.237.105 Pa. The  

liquid starts to boil when the temperature  at the wall attains T b = 21 K in the case of a total pressure of the mixture 

in the bubble (and in the entire tank) Pile + Ps = 1.237.10 s Pa. We will assume the filling of the tank with the 
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Fig. 2. Dependence of the time in which the pressure p = 3.25.105 Pa is 

attained in the tank: 1) adiabatic compression of a central bubble; 2) 

isothermal compression; 3) compression by the complete mixing model. The 

figures on the curve are the depth of warmup of the liquid in centimeters, t, 
sec; q, W/m 2. 

liquid 1 - r/o -- 0.8, a bubble volume V1 -- 13.6 m a, and a tank volume 68 m a. The lateral surface through which 

the heat flux passes is equal to S = 71.6 m 2. In adiabatic compression of the central bubble to the pressure p -- 

3.25- 105 Pa the V1/V2 ratio is 1.5. In isothermal compression it is 1:1/1:2 = 2. 
From (4) it follows that in the first case h -- 0.378 cm and in the second one h = 0.568 cm. 

The time needed for evaporation is determined by Eq. (7) in the following manner. We prescribe 

u/uo < 1 and find y from (5) and 0 from (6). Then from (7) we determine the value of q that enters both the time 

to and rate u0 scale: 

0.79 (T b - T 0 ) 2 2 2  
q = ha/_Pliq (1 + e) (0 - 1 - y). 

Having determined q, from Eq. (8) we find the scale to and the time of the process t -- Oto. By varying u/uo, we 

obtain a number of values for t and q. 

The results of the calculations are given in Fig. 2 for two cases: adiabatic and isothermal compression of 

the central bubble. The calculations show that the masses of the hydrogen boiled away at the wall differ by a factor 

of 1.5 and the times needed for this differ somewhat less (by a factor of 1.35-1.39). The dependence of t on q 

obtained by the model of complete mixing (Eq. (1)) is also given there. The plot shows that the complete mixing 

model yields a large time than the model of near-waU boiling but this conclusion is not valid at small q. This is 

associated with the fact that the heat penetration depth ~(t) for small heat fluxes (and correspondingly for times 

t > 8.105 sec) becomes too large and even exceeds the tank radius R (for t > 10 6 sec) .  This implies that the model 

of ablation of a semibounded body becomes inapplicable here. To orient oneself regarding the applicability of the 

model, the plot shows heat penetration depths. 

Conclusions. The proposed procedure for calculating the time in which the pressure in a tank with liquid 

hydrogen increases under zero gravity enables us to obtain upper and lower bounds of this time as a function of 

the amount of the heat flux q that goes directly to the liquid. The largest estimate is yielded by the model of 

complete mixing of the liquid while the smallest one is given by the model of adiabatic compression of a central 

gas bubble as a result of liquid boiling at the tank wall. True values of t lie somewhere between these two estimates. 

The considered numerical example of boiling of liquid hydrogen in a large tank shows that the model of near-wall 

boiling may yield overestimated times t for fairly small heat fluxes owing to the fact that it makes use of a model 
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of ablation of a semibounded body that takes no account of the finite distance from the boiling surface to the central 
bubble. In specific calculations for small q when the heat penetration depth according to the calculations becomes 
larger than the distance to the central bubble, estimation performed by the complete mixing model seems more 
reliable if it yields a smaller time than the near-wall boiling model. 

N O T A T I O N  

q, heat flux; TO, initial temperature of the liquid; p0q and p0, liquid and vapor densities at To; TI, final 

temperature; Pliq and Pv, liquid and vapor densities at the end of evaporation; ~/o, fraction of the tank volume 
occupied by the gas-vapor mixture at the beginning of heating; r/l, the same, at the end of heating; Am, mass of 
the evaporated liquid; V, tank volume; C, heat capacity of the liquid; L, heat of evaporation; Po, supercharge gas 

pressure; Ps, hydrogen saturation pressure; S, lateral surface of the tank;/l, thermal condutivity of the liquid; a, 
thermal diffusivity of the liquid; R, radius of the tank; l, its length; h, thickness of the evaporated liquid layer; ~,, 

adiabatic exponent; e, dimensionless parameter of evaporation; u, evaporation rate; u0, steady value of the 

evaporation rate; to, time scale; 0, dimensionless time; y, dimensionless parameter. 
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